Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome.
نویسندگان
چکیده
Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.
منابع مشابه
A mouse model of fragile X syndrome exhibits heightened arousal and/or emotion following errors or reversal of contingencies.
This study was designed to further assess cognitive and affective functioning in a mouse model of Fragile X syndrome (FXS), the Fmr1(tm1Cgr) or Fmr1 "knockout" (KO) mouse. Male KO mice and wild-type littermate controls were tested on learning set and reversal learning tasks. The KO mice were not impaired in associative learning, transfer of learning, or reversal learning, based on measures of l...
متن کاملAbnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo
Dendritic spine generation and elimination play an important role in learning and memory, the dynamics of which have been examined within the neocortex in vivo. Spine turnover has also been detected in the absence of specific learning tasks, and is frequently exaggerated in animal models of autistic spectrum disorder (ASD). The present study aimed to examine whether the baseline rate of spine t...
متن کاملA direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome.
The function of local protein synthesis in synaptic plasticity and its dysregulation in fragile X syndrome (FXS) is well studied, however the contribution of regulated mRNA transport to this function remains unclear. We report a function for the fragile X mental retardation protein (FMRP) in the rapid, activity-regulated transport of mRNAs important for synaptogenesis and plasticity. mRNAs were...
متن کاملThe reversal effect of mefenamic acid in the sporadic model of Alzheimer's disease in rat: a behavioral analysis
Alzheimer’s disease (AD) is a chronic neurodegenerative disease causing progressive impairment of memory and cognitive function. Streptozotocin (STZ) injection into the brain is known to cause cognitive impairment in rats and is similar to sporadic AD in humans. Several lines of evidence have indicated that an inflammatory process contributes to the pathology of AD. On the basis of the results ...
متن کاملThe reversal effect of mefenamic acid in the sporadic model of Alzheimer's disease in rat: a behavioral analysis
Alzheimer’s disease (AD) is a chronic neurodegenerative disease causing progressive impairment of memory and cognitive function. Streptozotocin (STZ) injection into the brain is known to cause cognitive impairment in rats and is similar to sporadic AD in humans. Several lines of evidence have indicated that an inflammatory process contributes to the pathology of AD. On the basis of the results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 39 7 شماره
صفحات -
تاریخ انتشار 2014